-chargepoin+

Express Solo

One Platform, Infinite Possibilities

Site Design Guide

75-001764-01 r0

IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTIONS

This manual contains important instructions for ChargePoint® products that shall be followed during installation, operation and maintenance of each product.

WARNING:

- 1. Read and follow all warnings and instructions before servicing, installing, or operating the ChargePoint® product. Install and operate only as instructed. Failure to do so may lead to death, injury, or property damage, and will void the Limited Warranty.
- 2. Only use licensed professionals to install your ChargePoint product and adhere to all national and local building codes and standards. Before installing the ChargePoint product, consult with a licensed contractor, such as a licensed electrician, and use a trained installation expert to ensure compliance with local building and electrical codes and standards, climate conditions, safety standards, and all applicable codes and ordinances. Inspect the product for proper installation before use.
- 3. Always ground the ChargePoint product. A touch currrent of >3.5 mA AC RMS is possible in case of a fault condition of loss of electrical continuity of the earthing conductor. Failure to ground the product can lead to risk of electrocution or fire. The product must be connected to a grounded, metal, permanent wiring system, or an equipment grounding conductor shall be run with circuit conductors and connected to the equipment grounding terminal or lead on the Electric Vehicle Supply Equipment (EVSE). Connections to the EVSE shall comply with all applicable codes and ordinances.

- 4. **Install the ChargePoint product using a ChargePoint-approved method.** Failure to install on a surface that can support the full weight of the product can result in death, personal injury, or property damage. Inspect the product for proper installation before use.
- The product is not suitable for use in Class 1 hazardous locations, such as near flammable, explosive, or combustible vapors or gases.
- 6. Supervise children near this device.
- 7. Do not put fingers into the electric vehicle connector or connector adapter. Do not touch fingers to charging rails.
- 8. Do not use this product if any cable is frayed, has broken insulation, or shows any other signs of damage.
- Do not use this product if the enclosure or the electric vehicle connector or connector adapter is broken, cracked, open, or shows any other signs of damage.
- 10. Wire and wire terminal information are provided in the ChargePoint product Site Design Guide and Installation Guide.
- 11. Torques for installation of wire terminals are provided in the ChargePoint product Installation Guide.
- 12. The ChargePoint product maximum operating temperature is 50 °C (122 °F).

IMPORTANT: Instructions applicable to Installation and Site Design Guides - Under no circumstances will compliance with the information in a ChargePoint guide such as this one relieve the user of the responsibility to comply with all applicable codes and safety standards. This document describes approved procedures. If it is not possible to perform the procedures as indicated, contact ChargePoint. ChargePoint is not responsible for any damages that may result from custom installations or procedures not described in this document or that fail to adhere to ChargePoint recommendations.

Product Disposal

Applicable to NA - Do not dispose of as part of unsorted domestic waste. Inquire with local authorities regarding proper disposal. Product materials are recyclable as marked.

Applicable to EU - To comply with Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE), devices marked with this symbol may not be disposed of as part of unsorted domestic waste inside the European Union. Enquire with local authorities regarding proper disposal. Product materials are recyclable as marked.

Document Accuracy

The specifications and other information in this document were verified to be accurate and complete at the time of its publication. However, due to ongoing product improvement, this information is subject to change at any time without prior notice. For the latest information, see our documentation online at chargepoint.com/guides.

Copyright and Trademarks

©2013-2025 ChargePoint, Inc. All rights reserved. This material is protected by the copyright laws of the United States and other countries. It may not be modified, reproduced, or distributed without the prior, express written consent of ChargePoint, Inc. ChargePoint and the ChargePoint logo are trademarks of ChargePoint, Inc., registered in the United States and other countries, and cannot be used without the prior written consent of ChargePoint.

Warranty

For information on warranty, refer to https://store.chargepoint.com/warranty-policy.

Symbols

This guide and product use the following symbols:

DANGER: Risk of electric shock

WARNING: Risk of personal harm or death

CAUTION: Risk of equipment or property damage

IMPORTANT: Crucial step for installation success

Read the manual for instructions

Ground/protective earth

Illustrations Used in This Document

The illustrations used in this document are for demonstration purposes only and may not be an exact representation of the product. However, unless otherwise specified, the underlying instructions are accurate for the product.

-chargepoin+

Contents

Important Safety Instructions	
1 Introduction	
Express Solo Overview	
Express Solo Guides	10
Questions	
2 Site Design Guidelines	
Initial Site Guidelines	12
Plan for Future Charging Capacity	
System Placement	
3 Civil and Mechanical Design	19
Dimensions	
Mount Specifications	
Drainage	24
Flood Plane	24
Clearances	
Bollards	
Ventilation	
Accessibility	
Signage	
4 Electrical Design	28
Electrical Supply Requirements	28
Grounding Requirements	3
Soft Shutdown	
Hardwire Ethernet	
Safety Hub	
Wiring and Conduit Requirements	
5 Connectivity	40
Signal Strength and Quality	40

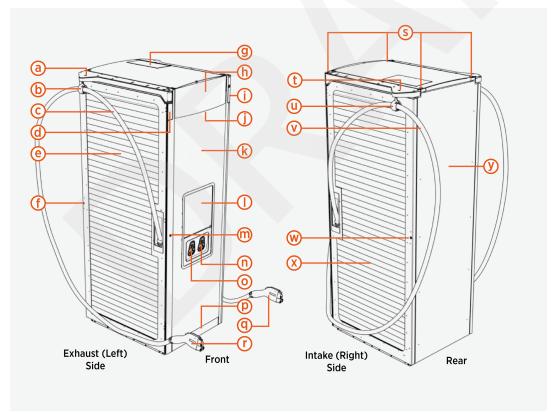
-chargepoin+

Repeaters	42

-chargepoin-

Introduction 1

This document is applicable to Express Solo (including all variants and options).


The purpose of this document is to provide all information needed to design a site for Express Solo..

Express Solo Overview

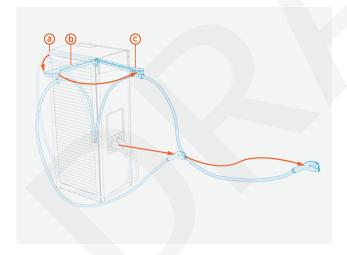
This section provides a high level overview of Express Solo.

Exterior Parts

The following provides an overview of Express Solo exterior parts.

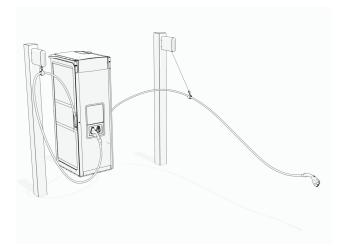


Ref	Part	Function or Definition		
(a)	Cable management system, left side	Suspends and manages left charging cable		
(b)	Tetherball, left	Connects left charging cable to cable management system		
(c)	Charging cable, left	Left-side cable for delivering charging power to EV and facilitating communication between the EV and charging station		
(d)	Status LED, left	Displays status of left charging cable		
(e)	Exhaust door	Encloses left side of the station and allows exhaust air to leave cabinet		
(f)	Exhaust door lock	Keyed lock for exhaust door		
(g)	Smart Antenna	Antenna (optional) for boosting cellular signal connection to the station		
(h)	Logo plate	Customizable cosmetic plate		
(i)	Status LED, right	Displays status of right charging cable		
(j)	Area light	Provides lighting for display and holsters		
(k)	Display door	Encloses front of the station and hosts the display, holsters, and Communications and Control Module (CCOM)		
(l)	Display	Charging station end-user interface		
(m)	Display door lock	Keyed lock for display door		
(n)	Holster, right	Holsters right charging cable		
(0)	Holster, left	Holsters left charging cable		
(p)	Bottom plate	Retains front customizable cosmetic vinyl		
(q)	Charging connector, right	Connects right charging cable to the EV		
(r)	Charging connector, left	Connects left charging cable to the EV		
(s)	Lifting points	Hosts eye bolts for hoisting the station		
(t)	Cable management system, right side	Suspends and manages right charging cable		
(u)	Tetherball, right	Connects right charging cable to cable management system		
(v)	Charging cable, right	Right-side cable for delivering charging power to EV and facilitating communication between the EV and charging station		
(w)	Intake door lock	Keyed lock for intake door		
(x)	Intake door	Encloses right side of the station and allows intake of cooling air		
(y)	Rear panel	Encloses rear side of the station		

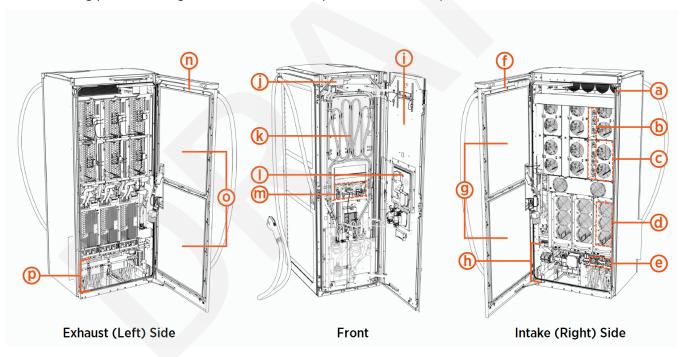

Cable Management System

Express Solo is available with several cable management options:

• Fixed Tether Point — Charging cables are suspended from fixed points on left and right sides of the charging station.



• Swingarm Cable Management Kit (CMK) — Moveable arms on left and right sides of the cabinet swing suspended charging cables out and forward for charging and retract cables to rest position between charges.


- (a) CMK retracted position
- (b) CMK half open (maximum side extended) position
- (c) CMK fully open (maximum front extended) position

• Overhead CMK — An extendable/retractable tetherball suspends charging cables on poles (or other vertical structure) positioned to the left and right of the station.

Interior Parts

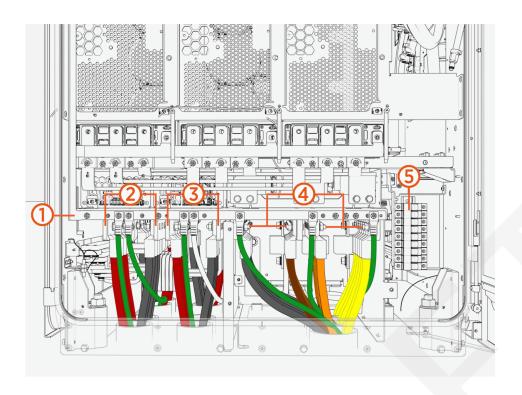
This following provides a high level overview of Express Solo interior parts.


Ref Part Function or Definition		Function or Definition		
(a)	Liquid cooled charging (LCC) cable fans	Fans (x4) for cooling the cabinet and internal components. LCC cables are an option.		
(b)	Contactor matrix	Switch matrix for directing HV DC output to downstream EVSEs and charging cables		
(c)	DC power module	Up to six modules that transform HV DC voltage from		

Ref	Part	Function or Definition	
		one level to another	
(d)	AC power module	Up to three modules that transform between AC power and HV DC power	
(e)	Aux power supply modules	Up to two modules that convert AC DC and HV DC power into LV DC system power	
(f)	Intake door	Encloses right side of the station and allows intake of cooling air	
(g)	Intake air filters	Filters (x2) that remove particles and contaminants from intake air	
(h)	Wire terminals and bus bars, intake side	Wire terminals, bus bars, and related components accessible from the intake side (right side) of the station	
(i)	Display door	Encloses front of the station and hosts the display, holsters, and Communications and Control Module (CCOM)	
(j)	Coolant reservoir	Reservoir for charging cable coolant	
(k)	Liquid cooling system	Manages heat generated in charging cables during high- speed charging	
(l)	ССОМ	Communications and Control Module	
(m)	Neutron modules	DC meters (x2: L and R) for HV DC charging cable outputs	
(n)	Exhaust door	Encloses left side of the station and allows exhaust air leave cabinet	
(0)	Exhaust air filters	Filters (x2) that prevent particles and contaminants from entering through the exhaust door	
(p)	Wire terminals and bus bars, exhaust side	Wire terminals, bus bars, and related components accessible from the exhaust side (left side) of the station	

Wire Terminals and Bus Bars

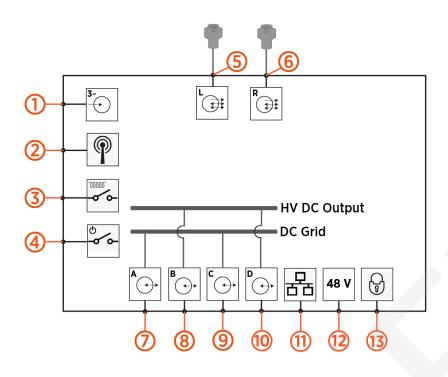
Intake Side


The following identifies the wire terminals, bus bars, and related components accessible from the intake side (right side) of Express Solo.

Ref	Part	Function or Definition	
(1)	Ethernet ports	Ports for Ethernet connections to paired EVSEs and/or hardwire Ethernet connection	
(2)	LV DC terminal block	Terminals for 48 V DC, soft shutdown switch, and door interlock wires	
(3)	AC shutoff switch	Manual switch for disconnecting AC power to the system	
(4)	Shunt trip terminals	Terminals for shunt trip wires	
(5)	HV DC Interface A (External DC Link) bus bars	Landings for HV DC Interface A (External DC Link) wires	
(6)	HV DC Interface B bus bars	Landings for HV DC Interface B (External DC Link) wires	

Exhaust side

The following identifies the wire terminals, bus bars, and related components accessible from the exhaust side (left side) of Express Solo.

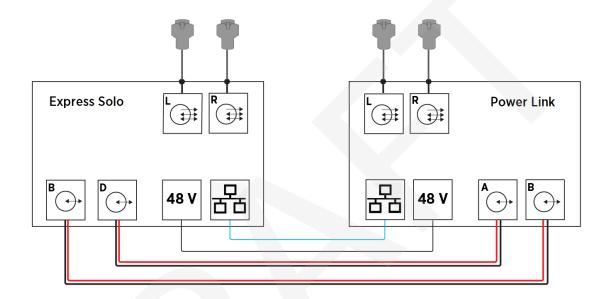

Ref	Part	Function or Definition
(1)	Ground bar	Ground bar with studs for landing ground (protective earth) wires
(2)	HV DC Interface D bus bars	Landings for HV DC Interface D wires
(3)	HV DC Interface C (External DC Link) bus bars	Landings for HV DC Interface C (External DC Link) wires
(4)	AC input bus bars	Landings for AC input wires
(5)	LV DC fuse block	Protection fuses for LV DC output lines

System Interfaces

The following provides a high-level overview of the Express Solo system interfaces. Express Solo has four HV DC interfaces: A, B, C, and D.

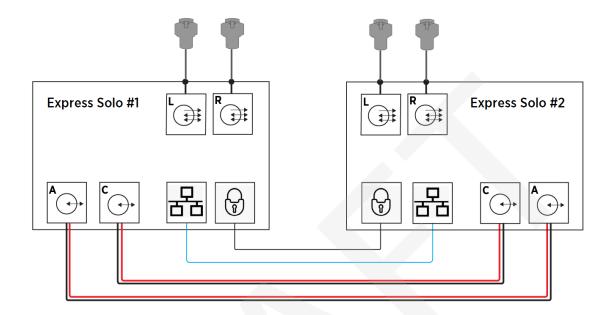
- Interfaces A and C, also known as the External DC Links, connect to a DC bus (950 V DC) called the DC Grid, and may be used to pair Express Solos.
- Interfaces B and D connect to a 100 1000 V DC bus called HV DC Output, and may be used to provide output to Power Links.

More information on Express Solo pairing is provided in <u>System Architectures</u>. Refer to the Express *Power Link Site Design Guide and Installation Guide* for information on Power Link.



Ref	Interface	Function or Definition
(1)	3-phase AC input	L1, L2, L3, and (optional) neutral AC input
(2)	Cellular	Cellular connectivity between Express Solo and ChargePoint Platform
(3)	Shunt trip	Optional connection to a shunt trip device
(4)	Soft shutdown switch	Optional connection to a soft shutdown switch
(5)	Charging cable, L	Output to left charging cable
(6)	Charging cable, R	Output to right charging cable
(7)	External DC Link or Interface A	Connects to the DC Grid; may be used to pair Express Solos
(8)	Interface B	Connects to the HV DC Output bus; may be used to provide output power to a Power Link
(9)	External DC Link or Interface C	Connects to the DC Grid; may be used to pair Express Solos
(10)	Interface D	Connects to the HV DC Output bus; may be used to provide output power to a Power Link
(11)	Ethernet	Ethernet connectivity between Express Solo and paired EVSEs
(12)	LV DC outputs	LV DC output to paired EVSEs
(13)	Door interlock sensor	Door interlock sensor communication between paired EVSEs

System Architectures


Express Solo may be installed in many system architectures to meet various charging needs:

- Express Solo may be installed as a standalone charging station configured with two charging cables for connection to EVs.
- Express Solo may be paired with up to two Power Links (such as the Power Link 2000). When paired in this architecture, Express Solo provides HV and LV DC output power to each Power Link and there is Ethernet connectivity between the Express Solo and each Power Link. A sample line diagram of this type of architecture is shown below.

Note: See the *Express Power Link Site Design Guide and Installation Guide* for information on Power Link system interfaces.

An Express Solo may be paired with another Express Solo. When paired in this architecture, the
Express Solos are connected via their HV DC links and there is Ethernet connectivity and door
interlock sensor connectivity between the Express Solos. A sample line diagram of this type of
architecture is shown below.

Note: In this architecture, HV DC interfaces B and D are available for connection to Power Links.

IMPORTANT: The architectures shown above demonstrate only a few of the many supported by Express Solo. The actual architecture for each site will vary depending on the number of stations, the charging capacity required at each charging station, charging requirements, and other criteria. If you are a site designer, contact a ChargePoint representative for the ChargePoint-approved wiring architecture for your specific project. Systems configured with non-approved wiring between Express Solo and paired EVSEs may not function as expected. If you are an installer, see the site plan for the architecture specific to the site.

Express Solo Guides

Access ChargePoint documents at chargepoint.com/guides.

Document	Content	Primary Audiences
Datasheet	Full station specifications	Site designer, installer, and station owner
Site Design Guide	Civil, mechanical, and electrical guidelines to scope and construct the site	Site designer or engineer of record
Construction Signoff Form	Checklists used by contractors to	Site construction contractor

Document	Content	Primary Audiences	
	ensure the site is correctly completed and ready for product installation		
Installation Guide	Anchoring, wiring, and powering on	Installer	
Operation and Maintenance Guide	Operation and preventive maintenance information	Station owner, facility manager, and technician	
Service Guide	Component replacement procedures, including optional components	Service technician	
Declaration of Conformity	Statement of conformity with directives	Purchasers and public	

Questions

For assistance, navigate to <u>chargepoint.com/support</u> and contact technical support using the appropriate region-specific number.

-chargepoin+

Site Design Guidelines 2

Initial Site Guidelines

An onsite evaluation is needed to determine conduit and wiring requirements from the panel to the proposed charging locations, as well as to measure cellular signal levels and identify suitable locations for any necessary cellular signal booster equipment.

If you have pre-existing infrastructure or are using your own preferred electrical contractor to prepare your site, an *Express Solo Construction Signoff Form* completed by a ChargePoint Operations and Maintenance (O&M) partner is required to certify compliance with electrical code and to ensure everything was prepared to ChargePoint specifications.

IMPORTANT: The charging station must be installed by a licensed electrician. If you need help finding one, refer to the Quick Start Guide or visit chargepoint.com/homeinstall.

Plan for Future Charging Capacity

Designing electrical infrastructure to support current and future needs for EV charging helps avoid costly upgrades later as demand for EV charging grows.

Consider these methods to prepare a site for future charging stations in a later phase of work:

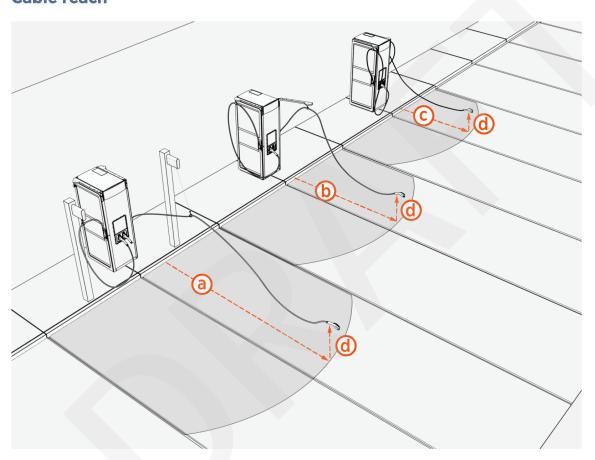
- Add extra capacity if electrical panels are being upgraded now.
- Use sub-panels as a way to shorten electrical paths.
- Maximize the conduit and conductor sizes (to product specifications) between the main electrical panel and future stations, to prevent needing to re-pull wire later.
- Below-ground wiring can be pre-staged if the correct site construction is performed in advance. Allowed terminations include a distribution unit, junction box, or plugged conduit. This eases cable pulls for future stations.
- Consider locations and spaces where it will be easy to add future stations.

System Placement

The placement of the Express Solo solution must meet the following requirements:

- Do not install Express Solo in a Class 1 hazardous location, as classified by NEC or local codes.
- Site conditions must be compatible with the following specifications listed in the Express Solo datasheet:
 - Operational altitude
 - Operating temperature
 - · Operating humidity
 - Enclosure rating
- Express Solo components must be installed on a level concrete surface rated for the weight of the component.

WARNING: Do not install components on asphalt. Asphalt cannot support the full weight of the enclosures. Failure to install the enclosure on a suitable surface may cause it to tip over, resulting in death, personal injury, or property damage.


Layout considerations:

- Determine appropriate ground anchoring locations where concrete exists or can be installed (no asphalt surfaces).
- Consider locations where it will be easy to add future stations.
- If using conduits to pull wires, determine the best conduit layout to minimize linear conduit costs to
 multiple parking spaces. If possible, avoid or minimize trenching requirements, especially more
 costly trenching to run conduit under asphalt surfaces.
- Determine if the existing utility service and electrical panel capacity is sufficient. Identify costs for any necessary upgrades and/or a new dedicated electrical panel. ChargePoint recommends using a licensed electrician to evaluate available capacity and identify any upgrades that may be required.
- If a dedicated EV electrical panel is required, choose a panel located close to the existing electrical supply.
- Measure cellular signal levels to ensure adequate cellular coverage at the station locations. To ensure
 adequate signal strength in underground or enclosed parking structures, cellular repeaters may be
 required. For more information, see Connectivity.
- ChargePoint recommends avoiding locations under trees where sap, pollen, or leaves would fall on the charging station and increase the station owner's site maintenance workload.

Guidelines for Different Parking Arrangements

- Choose adjacent parking spaces in an area with adequate lighting.
- Consider how easily drivers can find the stations they need to access.
- Check local requirements for accessibility and pathway width, sometimes called "path of travel", to ensure that station placement does not restrict sidewalk use.
- A pad built into the head of a parking space (instead of on the sidewalk) is allowed if local code allows it compared to the minimum parking space length, and the pad meets all pad requirements listed in this document.

Cable reach

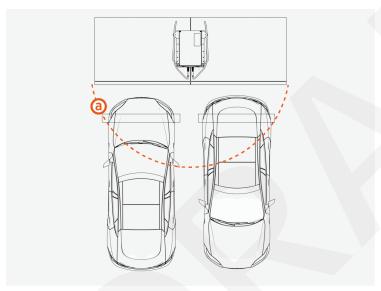
The following table provides the maximum cable reach from the station to charge port on a vehicle:

Note: The cable reach specifications for both the tall CMK and overhead CMK include the full extension of a tether cord from the CMKs, as depicted in the illustration above.

		Fixed Tether Point	Swingarm CMK	Overhead CMK
Cable length		5 m (16 ft 4.9 in)	5.2 m (17 ft 0.8 in)	7.6 m (25 ft)
Calala vas ala	Horizontal or vertical reach	3 m (9 ft 10.1 in) Horizontal (c)	4.2 m (13 ft 9.4 in) Horizontal (b)	Horizontal (a)
Cable reach	Height above ground		0.6 m (2 ft) (d)	

IMPORTANT:

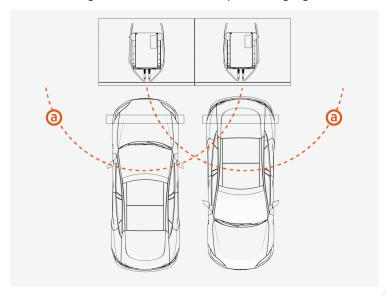
- Diagonal stall parking is not recommended.
- Place each Express Solo to maximize cable reach for the varied charge port locations on different EVs.


Commercial or Public Station Placement, Single or Dual Cable

For stall parking, ChargePoint recommends using perpendicular parking stalls that allow a vehicle to enter either front-first or rear-first, to better accommodate the varied locations of EV charge ports.

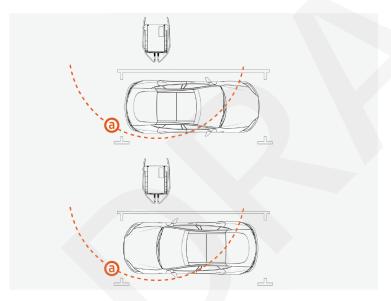
Note: While ChargePoint tests charging stations with a majority of upcoming vehicles, ChargePoint cannot guarantee the port locations of future vehicles and cannot warrant the configurations proposed will work for all vehicles.

The wheel stops are 900 mm wide and are placed at a distance of 3 feet from the front of each stall.


This illustration depicts a charging station with a dual cable.

(a) Cable reach radius:

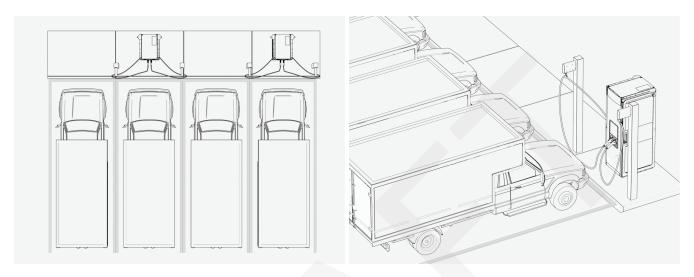
- Fixed tether point: 3 m (9 ft 10.1 in)
- Swingarm CMK: 4.2 m (13 ft 9.4 in)


The following three illustrations depict charging stations with single cables.

(a) Cable reach radius:

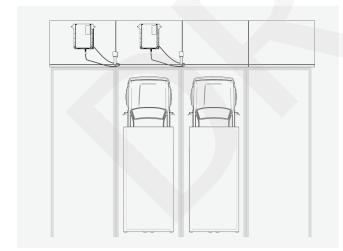
• Fixed tether point: 3 m (9 ft 10.1 in)

• Swingarm CMK: 4.2 m (13 ft 9.4 in)

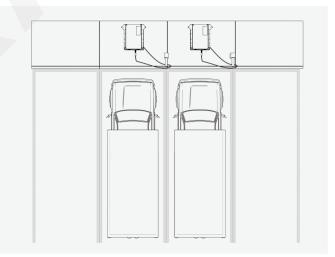

(a) Cable reach radius:

• Fixed tether point: 3 m (9 ft 10.1 in)

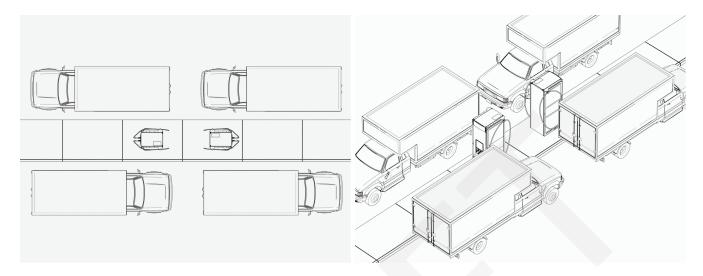
• Swingarm CMK: 4.2 m (13 ft 9.4 in)


Fleet Parking Arrangement

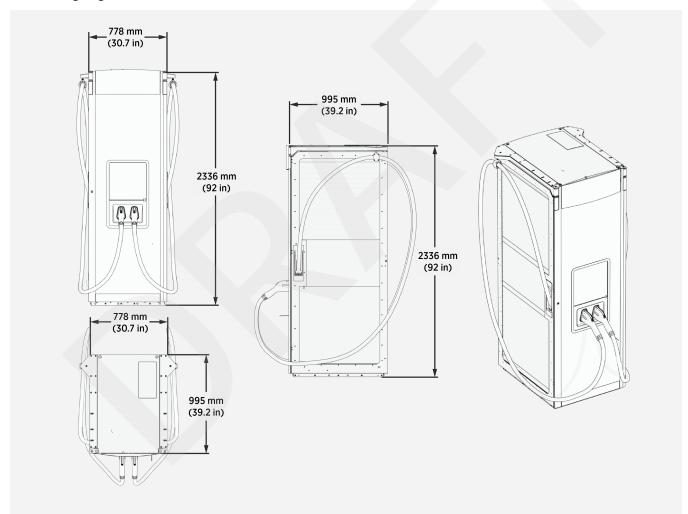
• Stall parking (Dual Charge Cable): For installing dual charge cable Express Solo stations, consider placing the station in front of every other parking space. Additionally, align the overhead CMK tether with the parking stripes on either side of the charging station.



• Stall parking (Single Charge Cable): Express Solos with single charging cables are always configured with the charging cable on the right side of the enclosure. Align the overhead CMK tether with the parking stall stripe adjacent to the vehicle's charging port. The illustrations below depict parking of the vehicles in relation to the charging stations, based on the side where the vehicle's charging port is located.


Vehicles with left-side charging ports

Vehicles with right-side charging ports


• Island parking: ChargePoint recommends placing a station in the center of the island facing away (station front is perpendicular to vehicles) in the same orientation. This allows the station to be accessible from both sides of the island.

Civil and Mechanical Design 3

Dimensions

Note: Images given in this section are not to scale.

Mount Specifications

WARNING: If not installed correctly, ChargePoint charging components may pose a crushing hazard, leading to death, personal injury, or property damage. Always use a ChargePoint-approved mounting method to install the ChargePoint charging components, as described in this section. Always install in accordance with applicable codes and standards using licensed professionals. Non-approved installation methods are performed at the risk of the contractor and void the Limited One-Year Parts Exchange Warranty.

Concrete pad specifications

The Express Solo must be installed on a concrete pad. The concrete pad may be either newly poured or it may be an existing concrete surface.

IMPORTANT: The concrete surface must be smooth and cannot exceed a slope of 10 mm per meter (0.12 in per ft). If an existing concrete surface does not meet the slope requirement, a localized concrete pad must be poured and leveled to meet the slope requirement.

The concrete pad must either be designed to be site-specific or must meet the one of the specifications provided below. In some extreme conditions, a larger pad may be required. For sites with less stringent seismic, soil, or wind conditions, a smaller pad might be possible.

Conservative concrete stability specifications for the Express Solo are listed below for the following design scenarios:

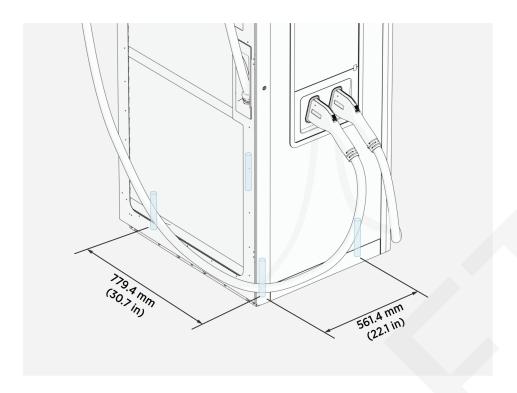
- 1. 170 mph wind, high seismic, Class 3 Soil
- 2. 170 mph wind, high seismic, Class 4 Soil
- 3. 170 mph wind, high seismic, Class 5 Soil
- 4. 140 mph wind, lower seismic, Class 3 Soil
- 5. 140 mph wind, lower seismic, Class 4 Soil
- 6. 140 mph wind, lower seismic, Class 5 Soil

All scenarios assume:

- Minimum concrete rating of 2500 PSI.
 - All-threaded M20 anchor bolts are embedded 229 mm (9 in) into concrete pad, are made of ASTM F1554 Grade 55 carbon steel, and are hot dip galvanized. (TBD)
- The anchor bolt pattern is centered within the designed stability area.

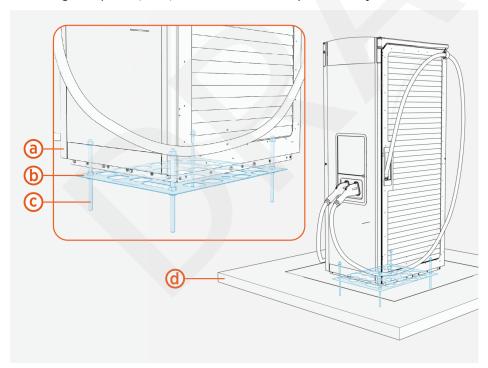
Design Scenario #	B1, Width	B2, Width	T, Thickness	#N1 @ S1" O.C. Top Rebar	#N2 @ S2" O.C. Bottom Rebar
1	TBD mm (in)	TBD mm (in)	TBD mm (in)	(TBD)	(TBD)
2	TBD mm (in)	TBD mm (in)	TBD mm (in)	(TBD)	(TBD)

Design Scenario #	B1, Width	B2, Width	T, Thickness	#N1 @ S1" O.C. Top Rebar	#N2 @ S2" O.C. Bottom Rebar
3	TBD mm (in)	TBD mm (in)	TBD mm (in)	(TBD)	(TBD)
4	TBD mm (in)	TBD mm (in)	TBD mm (in)	(TBD)	(TBD)
5	TBD mm (in)	TBD mm (in)	TBD mm (in)	(TBD)	(TBD)
6	TBD mm (in)	TBD mm (in)	TBD mm (in)	(TBD)	(TBD)



IMPORTANT: In the case of using an existing pad, the pad must either meet one of the above specifications, or it must be inspected and approved by a structural engineer for the specifications given below.

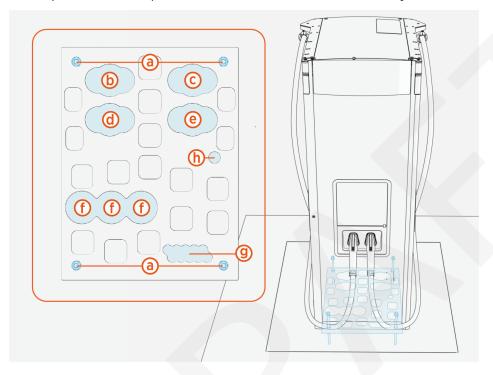
Weight	TBD
Height x width	TBD
Frontal area	Height * Width
CG height	TBD
Anchor bolts size and quantity	M20 (x4)
Anchor bolts embedment	TBD
Anchor bolts placement	See Anchor Bolt Placement


Anchor bolt placement

The Express Solo mounts over four anchor bolts embedded in a concrete pad with the anchor bolt pattern shown here.

Standard mount

The most common mounting method for the Express Solo is a new pad installation using a Concrete Mounting Template (CMT) and conduit stub-up wire entry:


• The Express Solo pedestal (a) mounts onto four M20 anchor bolts (b) exposed 127 mm (5 in) above the concrete pad.

• The CMT (c) is embedded into a newly poured concrete pad (d) to align anchor bolts and underground stub-up wiring conduits. (Conduits are not shown in illustration.)

Note: The CMT is shipped separately and must be assembled onsite before pouring the concrete pad. The CMT must be embedded with its top panel positioned 51 mm (2 in) below the concrete surface. Refer to the *Concrete Mounting Template Guide* for more information.

Express Solo CMT

The Express Solo CMT positions the anchor bolts and wire entry as shown below.

- (a) M20 anchor bolt (x4) locations for mounting Express Solo (see <u>Anchor Bolt Placement</u>).
- (b) HV DC output A (DC link) wires exit.
- (c) HV DC output B wires exit.
- (d) HV DC output C (DC link) wires exit.
- (e) HV DC output D wires exit.
- (f) HV AC input wires entry.
- (g) LV DC output wires and Ethernet cable exit.
- (h) AC shunt trip wires exit.

Surface mount

The Express Solo may be installed on an existing concrete surface in accordance with the following guidelines:

• The concrete surface must be inspected and approved by a structural engineer, as described in Concrete Pad Specifications.

- The anchor bolts must be installed in the concrete surface as follows:
 - Anchor holes are drilled into the concrete using the anchor bolt pattern given in <u>Anchor Bolt Placement</u>. The holes are drilled to a depth so that 127 mm (5 in) of each anchor bolt is exposed above the concrete pad.
 - Anchor bolts are epoxied into the holes. Use an epoxy with a minimum bonding strength of 11.7 MPa, compressive strength of 82.7 MPa minimum, and tensile strength of 49.3 MPa minimum. Examples include Hilti HIT-RE 500 V3 (normal cure) or Hilti HIT-HY 200-A (fast cure). (TBD)

Note: Epoxy is required only if embedding anchor bolts into an existing concrete pad. It is not applicable for a new concrete pour with CMT.

Note: Different epoxy types have different cure times at various temperatures. Check local temperatures for the site in advance to help choose an appropriate epoxy.

• The anchor bolts must be hot dip galvanized.

Express Solo surface conduit entry kit

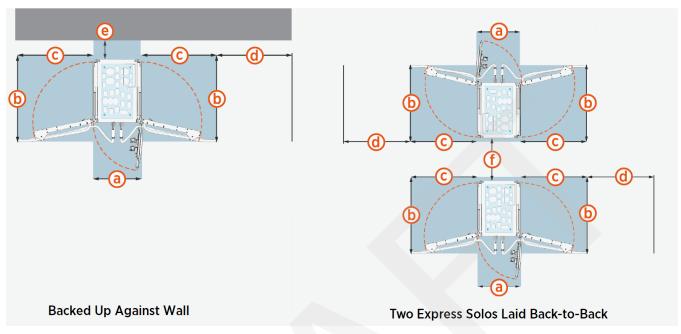
Express Solo can be installed on a platform for surface conduit entry. <u>Contact ChargePoint</u> for more information.

Drainage

Ensure any site slopes, walls, or fencing do not trap water around the installation site.

Flood Plane

Express Solo is designed for a 61 mm (2.4 in) flood plane. If the site has a flood plane greater than 61 mm (2.4 in) for a 100-year flood event, consider installing the Express Solo on a raised concrete pad.



WARNING: Exposing the Express Solo to over 61 mm (2.4 in) of standing water could create an electrocution, shock, or fire hazard.

If a Express Solo has been exposed to standing water, cut power to the component and contact Express Solo before the component is powered on.

Clearances

Express Solo requires clearances for service and ventilation as given below.

Side	Layout	Clearance		
Front	Any layout	(a) Front door swing clearance	800 mm (31.5 in)	
		(b) CMK swing clearance, depth	1000 mm (39.4 in)	
Sides	Any layout	(c) CMK swing clearance, width	1000 mm (39.4 in)	
		(d) Service clearance, additional	1000 mm (39.4 in)	
Rear	Backed up against wall (e) Clearance from cabinet rear panel*		152 mm (6 in)	
	Laid back-to-back	(f) Clearance between rear panels*	305 mm (12 in)	
*Note: If the Express Solo has no cable swingarms, the rear clearance requirement is 0 mm (0 in).				

Additionally, follow the clearance guidelines below:

- Front and rear clearances must be at grade level +/- 13 mm (0.5 in).
- The interior of the Express Solo is accessed from both the front and rear cover panels, which lift off. No separate door swing clearance is required.
- Fencing, bollards, or wheel stops must not encroach upon the clearances listed above, if present. These barriers are not explicitly required by ChargePoint.

Note: For any questions about allowable layouts, contact ChargePoint.

CAUTION: Each Express Solo weighs 1200 kg (2646 lb). At least two people are required to replace a Express Solo. The front clearance must be spacious enough to accommodate at least two people.

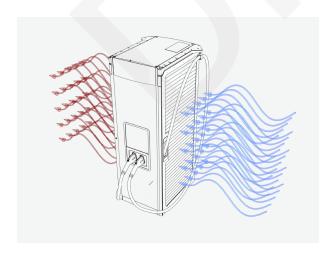
IMPORTANT: Check local and regional codes for any additional clearance requirements regarding safety, high voltage equipment, and accessibility requirements.

Bollards

Bollards are not explicitly required by ChargePoint. If applicable, ChargePoint recommends these best practices and considerations when designing bollards for the site:

- Permanent bollards must not encroach upon the clearance areas described in Clearances.
- Removable bollards are allowed if service personnel have the ability to move them as needed.

Bollards and wheel stops each has advantages and disadvantages. Factors to consider include - cosmetics, usability, accessibility and vehicle types.


Wheels stops has the following advantages:

- Clean look
- Less chance of cables getting tangled with bollards

Bollards has the following advantages:

- Better for ADA (see accessibility)
- Larger vehicles and sites with mixed vehicle sizes that have different overhangs (trucks vs. light duty vehicles).
- More visibility while backing up.

Ventilation

Intake vents are positioned at the front of the Express Solo (blue arrows) and exhaust vents are at the rear (orange arrows). When positioning multiple Express Solos, orient intake and exhaust to avoid recirculation.

Note: Express Solo requires TBD kW (TBD BTU/hr) of heat rejection.

Accessibility

Comply with regional accessibility laws, regulations, and ordinances. The Express Solo charging station must not block ramps or pathways and the height of the interactive display cannot exceed the maximum height as dictated by local laws. Do not install Express Solo on a raised concrete pad for parking spaces reserved for people with limited mobility. Express Solo meets accessibility height requirements when measured from a finished floor or ground plane.

[Additional information on accessibility coming soon.]

Signage

Refer to local and regional code to design the following elements for the site:

- Any required re-striping of parking spaces
- EV or Accessible EV signs
- EV or Accessible EV paint markings on and around the parking spaces

ChargePoint recommends posting signage indicating the maximum drive-through height for vehicles passing beneath the chargers.

-chargepoin+

4

Electrical Design

Conduit and wire size are determined based on current. Service wiring in conduit or armored cable must be run as required to comply with local electrical codes. Consult national and local codes or a project engineer to determine the grade, quality, and size of the conduit or cable.

Note: All wiring and conduit is supplied by the contractor unless otherwise indicated.

Electrical Supply Requirements

Charging stations are considered continuous load devices (EVs draw maximum load for long durations). Therefore, electrical branch circuits to EV chargers must be sized at 125% of the load on each leg of a 3-phase panel for North American installations, in accordance with National Electric Code requirements. For other regions, refer to local code.

When planning multiple EV charging stations, it is best practice to segment non-continuous and continuous loads, with all branch circuits for EV charging on a dedicated electrical panel assembly with adequate circuit breakers. When sizing new electrical panels dedicated for EV charging, all branch circuits must support continuous load.

Each Express Solo requires its own circuit breaker. Recommended breaker sizing is given below. Check with local code for breaker size requirements.

• 400 V AC, EU

	AC Nominal Input Current Rating	Recommended breaker size
Max output power 350 kW	542 A (TBD)	600 A (TBD)
Max output power 500 kW	789 A (TBD)	800 A (TBD)
Max output power 525 kW	809 A (TBD)	900 A (TBD)

• 480 V AC, NA

	AC Nominal Input Current Rating	Derating Factor (125% continuous)	Recommended breaker size
Max output power 200 kW	258 A	323 A	350 A
Max output power 400 kW	515 A	644 A	700 A
Max output power 600 kW	769 A	961 A	1000 A

• 600 V AC, Canada

	AC Nominal Input Current Rating	Derating Factor (125% continuous)	Recommended breaker size
Max output power 225 kW	232 A	290 A	300 A
Max output power 450 kW	463 A	579 A	600 A
Max output power 625 kW	691 A	864 A	900 A

Note: Express Solo has a short circuit current rating of 100 kA.

Express Solo is tested to IEC 61000-4-5, Level 5 (6 kV @ 3000 A) standards.

Disconnect and Emergency Shutoff

Express Solo ships to the EU region equipped with an AC disconnect switch.

For Express Solos shipped to NA regions, the AC disconnect switch is an option. ChargePoint recommends installing a local AC disconnect switch, separate from the shunt trip wiring, between each Express Solo and the electrical panel. This is especially important if the main electrical panel or utility room is distant, out of line of sight, or has restricted access. Check local code to determine disconnect and emergency shutoff requirements.

Note: There are significant changes in the 2026 NEC. If deploying Express Solo in NA regions, be sure to check the latest codes.

Transformer Configuration

Refer to the following table for the transformer configuration.

	North America	Europe	Canada
Input rating	480 V AC, 3-phase,	400 V AC, 3-phase,	600 V AC, 3-phase,
	1000 A, 60 Hz	850 A, 50 Hz	900 A, 60 Hz
Electrical service configuration	277/480 V AC 3-phase	230/400 V AC 3-phase	347/600 V AC 3-phase
	grounded WYE (Y)	grounded WYE (Y)	grounded WYE (Y)
	configuration	configuration	configuration
	480 V AC 3-phase Delta	400 V AC 3-phase Delta	600 V AC 3-phase Delta
	(D) configuration	(D) configuration	(D) configuration
	(corner-grounded Delta	(corner-grounded Delta	(corner-grounded Delta
	transformer) is not	transformer) is not	transformer) is not
	acceptable	acceptable	acceptable
Product connection	Express Solo must be connected to L1, L2, and L3 (neutral not required)		

Shunt Trip Wiring (optional)

Express Solo provides a set of unpowered (dry) contacts to connect to an optional shunt trip device. These contacts are rated to 240 VAC and 6 amps.

Wiring sections to and from Express Solo are deactivated when unsafe conditions are detected, such as unintended cover panel removal. A breaker reset is required any time the shunt trip is activated.

If installed, each Express Solo must be wired to the shunt trip unit of its own upstream circuit breaker. Upstream AC power must be shut off at the panel to remove shock risk inside the Express Solo. All shunt trip behavior is already hard-coded into the Express Solo and has no programmable variables.

Emergency stop devices are governed by local and regional codes and may be required in some sites. If one is required by code or by the site, confirm specifications with your ChargePoint representative.

- (a) Electrical panel
- (b) Express Solo
- (c) Control voltage supply, maximum 240 VAC
- (d) Shunt trip circuit breaker

- (e) Shunt trip coil
- (f) Auxiliary contacts (closed when main contacts are closed)
- (g) 3-phase AC main
- (h) Express Solo shunt trip contacts, Normally Open (inside the auxiliary power supply, accessible on field wiring terminal block)
- (i) 3-phase Express Solo AC input

Grounding Requirements

- Express Solo must be connected to a grounded, metal, permanent wiring system.
- Ensure a grounding conductor that complies with local codes is properly grounded to earth at the service equipment or, when supplied by a separate system, at the supply transformer.
- When connecting Express Solo to Power Links, charging components must be ground bonded in sequence from Express Solo to Power Link.
- Some regions also require a grounding rod to be installed adjacent to each component. Check local code to ensure compliance.
- Note: The leakage current from Express Solo to protective earth conductor can reach up to 200 mA.

Soft Shutdown

The soft shutdown function is an optional feature that can be installed as a way to stop a charge session on an Express Solo. It is not meant to safely service the Express Solo or take the place of a HV disconnect switch.

To use this feature, the installer must select and mount a physical soft shutdown switch (one per Express Solo) with the following specifications:

- THHN insulation building wire rated to 600 V
- Normally Open (NO) configuration
- Switch current of 2 mA
- Switch voltage of 48 V
- Gold contacts suggested

When creating the site drawings, consider where any soft shutdown switches should be positioned. If applicable, consider disability and accessibility regulations for your region when choosing switch locations.

Note: Soft shutdown switch requires a dedicated wire conduit. For more information, refer to <u>Standard</u> Wire Entry Wiring Requirements.

When the switch is closed, the Express Solo software ends the current charging session with a normal stop, then opens DC contactors in the Express Solo. The station stays in this state regardless of station power, not allowing operation. Only a service technician can place the Express Solo back into service after the switch is reset to Open.

WARNING: The HV DC wires from the Express Solo could still be energized with the switch closed.

Hardwire Ethernet

As an option, Express Solo supports hardwire Ethernet connection to an external network server. The connection requires a conduit for the Ethernet cable, which must be run from the customer server or network equipment directly to Express Solo. The connection is installed in only one Express Solo within an Express cluster, providing network connection for every node in the cluster

Safety Hub

Safety Hub is an Express Solo feature designed to enhance operational safety through continuous electrical isolation monitoring. The use of Safety Hub is mandatory when pairing Express Solo to Power Links. Safety Hub requires one pair of twisted wires to run to each Power Link. The wires run in the same conduit used to carry 48 V DC and Ethernet wires connecting to Power Links.

Wiring and Conduit Requirements

For full product specifications, refer to the *Express Solo Datasheet*. Ensure the installation location is equipped with service wiring that supports the Express Solo site's power requirements.

Note: For V2G and energy storage applications, contact ChargePoint for LV wire and conduit requirements.

Wire Run Lengths

- The maximum total HV DC wire run length from an Express Solo to a paired EVSE (such as a Power Link 2000 or another Express Solo) must not exceed 200 m (656 ft). Refer to the cluster configuration provided by ChargePoint for interconnect details.
- LV DC wire and Ethernet run length between Express Solo and any Power Link must not exceed 200 m (656 ft).
- The maximum wire run length between an Express Solo and an external network connection is 200 m (656 ft).

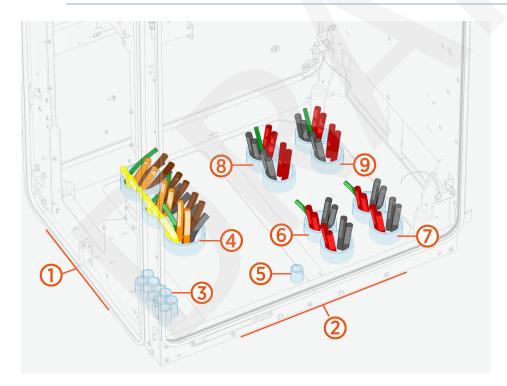
Ethernet Requirements

- For Ethernet communications between any two nodes (for example, between an Express Solo and a Power Link) or to an external network connection:
 - Distances up to 100 m (328 ft) must use outdoor-rated Cat6 Shielded Twisted Pair (STP) cable. Lesser grades of cable do not provide the required noise immunity.
 - Distances between 100 m (328 ft) and 200 m (656 ft) must use Paige OSP Shielded GameChanger cable. See paigedatacom.com/gamechanger.

 An Ethernet cable connecting between an Express Solo and any other EVSE must have the shield terminated at both ends.

Conduit Requirements

In regions that use conduits, wire conduits may enter Express Solo through a <u>Concrete Mount Template</u> (<u>CMT</u>) or skid via conduit stub-ups. In regions that do not use conduits and/or use armored cables, the cables may be laid per the conduit layout defined by the CMT.


If using conduits:

- Conduits must be sealed to maintain a Pollution Degree 2 environment.
- Conduits must not have bell ends. Conduits with bell ends may interfere with tolerances inside the Express Solo.
- If using conduit stub-ups (ie., not using surface conduit entry), conduits must stub-up 13–25 mm (0.5–1 in) above the mounting surface.

Below is a sample depiction of wire entry via conduit stub-ups.

IMPORTANT: Conduit and wire size/quantity are shown for illustrative purposes only. The actual quantity and size of conduits and wires for your specific site may vary and shall depend on site specific requirements.

- (1) Front (display) side of enclosure
- (2) Intake (right) side of enclosure
- (3) LV DC and Ethernet conduits
- (4) LV DC and Ethernet conduits
- (5) Shunt trip conduit

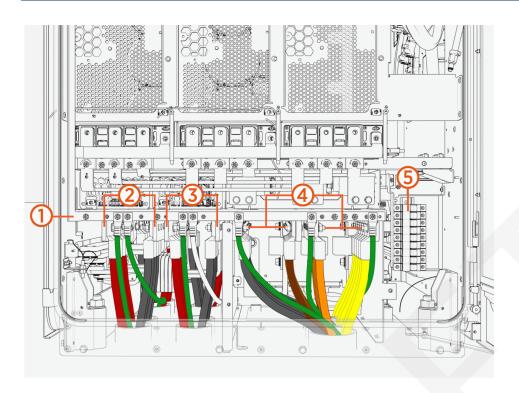
- (6) HV DC Interface A conduits (DC Link conduits)
- (7) HV DC Interface B conduits
- (8) HV DC Interface C conduits (DC Link conduits)
- (9) HV DC Interface D conduits

IMPORTANT: The following table provides the maximum size and quantity of conduits that can be installed on Express Solo configured for standard wire entry. The actual conduit size and quantity must be chosen based on site specific wiring requirements. The outer diameter of the conduits must not exceed the maximum trade size specifications listed below.


Conduits For	Conduit Quantity x Trade Size		
	North America	Europe	
AC input wires	3 x 4 inch max.	3 x 110 mm max.	
HV DC interface A, B, C, D wires or External DC Link wires	1 x 4 inch max. per interface or 2 x 3 inch max. per interface	1 x 110 mm max. per interface or 2 x 78 mm max. per interface	
LV DC, Ethernet, and Safety Hub wires connecting to Power Link*	1 x 1 inch to each Power Link Note: 1 inch size conduit is required. The quantity of conduits will depend on the configuration.	1 x 27 mm to each Power Link Note: 1 inch size conduit is required. The quantity of conduits will depend on the configuration.	
Ethernet and door interlock sensor wires connecting to another Express Solo**	1 x 1 inch	1 x 27 mm	
Optional Features 1 x 3/4 inch max. per feature (Soft shutdown switch, shunt trip, hardwire Ethernet)		1 x 21 mm max. per feature	

^{*}Note: LV DC, Ethernet, and Safety Hub wires travel in the same conduit when pairing Express Solo to a Power Link.

Wire Landing Locations


The following identifies the wire terminals, bus bars, and related components accessible from the intake side (right side) of Express Solo.

^{**}Note: Ethernet and door interlock sensor wires travel in the same conduit when pairing an Express Solo to another Express Solo.

Ref	Part	Function or Definition
(1)	Ethernet ports	Ports for Ethernet connections to paired EVSEs and/or hardwire Ethernet connection
(2)	LV DC terminal block	Terminals for 48 V DC, soft shutdown switch, and door interlock wires
(3)	AC shutoff switch	Manual switch for disconnecting AC power to the system
(4)	Shunt trip terminals	Terminals for shunt trip wires
(5)	HV DC Interface A (External DC Link) bus bars	Landings for HV DC Interface A (External DC Link) wires
(6)	HV DC Interface B bus bars	Landings for HV DC Interface B (External DC Link) wires

The following identifies the wire terminals, bus bars, and related components accessible from the exhaust side (left side) of Express Solo.

Ref	Part	Function or Definition
(1)	Ground bar	Ground bar with studs for landing ground (protective earth) wires
(2)	HV DC Interface D bus bars	Landings for HV DC Interface D wires
(3)	HV DC Interface C (External DC Link) bus bars	Landings for HV DC Interface C (External DC Link) wires
(4)	AC input bus bars	Landings for AC input wires
(5)	LV DC fuse block	Protection fuses for LV DC output lines

Wire Specifications

IMPORTANT:

- For AC and DC high voltage (HV), high current wiring, use copper or aluminum wires rated for 90 °C (194 °F).
 - AC high current wires can be THHN/THHW/THW-2/THWN-2 based on site condition (dry or wet) and rated for 600 V.
 - DC HV wires can be XHHW/XHHW-2 based on site condition (dry or wet) and rated for 1000 V.
- For the typical charging application, neutral is not required. If considering an application for V2G, neutral may be required. For more information, navigate to <u>chargepoint.com/support</u> and contact technical support using the appropriate regionspecific number.
- For low voltage (LV) DC wiring, use only copper wires (XHHW/XHHW-2 based on site condition, dry or wet) rated for 75 °C (167 °F).
- For shunt trip wires, use wires rated for more than 400 V.
- Use copper lugs for copper wires and aluminum lugs for aluminum wires. The lugs must be
 nickel, tin, or silver plated compression (not mechanical) lugs. Nickel-plated lugs installed
 with dielectric grease is recommended.
- When using aluminum lugs, ChargePoint recommends using an appropriate antioxidant compound on aluminum conductors when terminating into tin-, nickel-, or silver-plated lugs, where required by code or specified by the lug manufacturer.

IMPORTANT:

After pulling of wires, all AC and DC high voltage wires must undergo insulation testing as outlined in the *High Voltage Wire Insulation Resistance Test Field Guide*.

IMPORTANT: Following are wire specifications for Express Solo, including the maximum quantity and size that the wire terminals can accommodate. All sizing assumes a maximum ambient temperature of 50 °C (122 °F). Where the maximum wire size is listed, the actual wire quantity and size must be chosen based on site-specific wiring requirements and in accordance with the maximum allowed conduit filling rate per local code.

Wire	Quantity	Size	Termination
AC Input	Max. 18 wires (six per phase)	EU: Max. 150 mm ² NA: Max. 300 MCM	Lug: Compression lug. Short barrel and tongue with single hole sized for M12 (0.5 in) stud. Max. tongue width: 36 mm (1.3 in).
AC Ground (PE)	Max. 3 wires (1 per AC conduit)	Refer to local code for size	Lug: Short barrel and tongue with single hole sized for M6 (0.25 in) stud.
HV DC Interfaces A, B, C, D	Max. 8 wires per interface (four per pole)	EU: Max. 150 mm ² NA: Max. 350 MCM	Lug: Compression lug. Short barrel and tongue with single hole sized for M12 (0.5 in) stud. Max. tongue width: 36 mm (1.3 in).
High power ground	Max. 2 wires per interface (1 per interface conduit)	Refer to local code for size	Lug: Short barrel and tongue with single hole sized for M6 (0.25 in) stud.
LV DC output	Max 4 wires (2 wire pairs; each pair has one wire per pole)	16 mm ² (6 AWG)	Stripped wire end
Ethernet	Max. 3 cables 1 per Power Link 1 for hardwire Ethernet (if needed)	Outdoor-rated Cat6 STP*	RJ45 connector, shielded
Door interlock sensor	2 wires	1.5 mm ² (16 AWG)	Stripped wire end
Safety Hub	2 wires	2.5 mm ² (14 AWG)	Stripped wire end
Soft shutdown switch	2 wires	2.5 mm ² (14 AWG)	Stripped wire end
Shunt trip	2 wires	2.5 mm ² (14 AWG)	Stripped wire end

^{*}Note: The required Ethernet cable type depends upon the cable run length. See Ethernet Requirements.

For AC input, Express Solo allows a maximum of 18 total current carrying conductors. If utilizing this wiring configuration, install spreader bars at the breaker or transformer to split the outputs across the high number of conductors.

-chargepoin+

Connectivity 5

A consistently strong cellular signal is needed at each Express Solo before installers can activate the vehicle charging station. Weak or sporadic signal can affect crucial aspects of the charging station, including:

- · Accuracy in reporting
- Ability for customer support to troubleshoot problems
- Support for advanced features such as Power Management

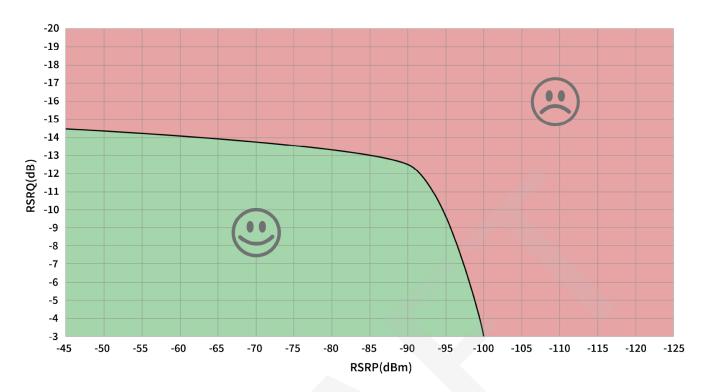
A strong signal is also required for the ChargePoint Assure maintenance and management programs.

ChargePoint stations use cellular data connections to reach ChargePoint Cloud Services. This allows secure, PCI-compliant data connections without requiring any other form of internet connectivity at an install site or imposing additional network management responsibilities on a site host.

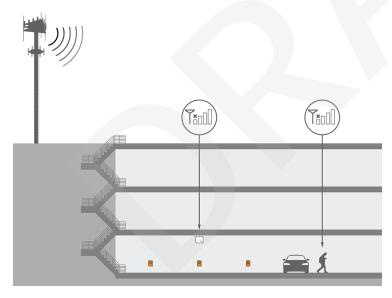
Each station has its own cellular connection.

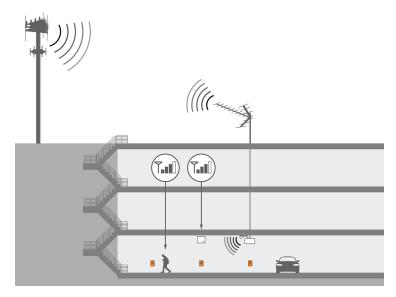
Note: Wired Ethernet is supported if cellular connectivity is poor. See Hardwire Ethernet.

Signal Strength and Quality


You must use a cellular signal detection device (such as a Siretta Snyper LTE or equivalent) to take signal strength readings at the exact proposed mounting location of the Express Solo.

In North America, ChargePoint products all support LTE bands 2, 4, and 5. The most commonly supported carriers to check during site evaluation are:


- US: AT&T, T-Mobile, and Verizon
- · Canada: Rogers, Telus, and Bell


You must test the LTE signal strength at the proposed mounting location of every gateway station and ensure the location meets the minimum RSRQ at -12.5 dB or better, for RSRP measured at -90 dBm or better. Refer to the graph for acceptable combinations.

Note: These numbers are all negative, so -70 dBm is stronger than -85 dBm and -90 dBm is weaker.

If the signal strength is weaker than this, take cellular readings at the location where any cellular signal booster antennas will be installed. Ensure enough signal exists for that repeater model. Install repeaters to boost the strength of the cellular signals. Repeaters are often required when installing charging stations in an underground garage or enclosed parking structure.

For other regions, or if the site does not have strong signal on these bands, contact your ChargePoint representative for additional solutions.

ChargePoint strongly recommends a consultation with a cellular connectivity specialist before all installations. A consultation can verify:

- Service with a supported carrier on a supported LTE band
- Available signal and local noise levels on applicable bands
- Site changes to correctly meet your needs, both for station bandwidth and other phone coverage for customer or tenant satisfaction

Repeaters

Some sites require repeaters to ensure strong signal to all stations. If a repeater is required, look for a model with these features:

- Specifically LTE-compatible on the listed bands
- Multi-carrier
- Multi-band
- Not already dedicated to FirstNet or other first responder-specific networks
- · Auto-gain recommended

Note: Do not rely on readings taken with a cell phone when conducting site surveys. Many signal boosters and network extenders may not be compatible with ChargePoint hardware, including certain types of Distributed Antenna Systems (DAS), micro/nano/pico/femto-cells, and carrier- or band-specific signal boosters.

Repeaters are not allowed in France. Contact the French service provider for more information.

Limited Warranty Information and Disclaimer

The Limited Warranty you received with your charging station is subject to certain exceptions and exclusions. For example, your use of, installation of, or modification to, the ChargePoint® charging station in a manner in which the ChargePoint® charging station is not intended to be used or modified will void the limited warranty. You should review your limited warranty and become familiar with the terms thereof. Other than any such limited warranty, the ChargePoint products are provided "AS IS," and ChargePoint, Inc. and its distributors expressly disclaim all implied warranties, including any warranty of design, merchantability, fitness for a particular purposes and non-infringement, to the maximum extent permitted by law.

Limitation of Liability

CHARGEPOINT IS NOT LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION LOST PROFITS, LOST BUSINESS, LOST DATA, LOSS OF USE, OR COST OF COVER INCURRED BY YOU ARISING OUT OF OR RELATED TO YOUR PURCHASE OR USE OF, OR INABILITY TO USE, THE CHARGING STATION, UNDER ANY THEORY OF LIABILITY, WHETHER IN AN ACTION IN CONTRACT, STRICT LIABILITY, TORT (INCLUDING NEGLIGENCE) OR OTHER LEGAL OR EQUITABLE THEORY, EVEN IF CHARGEPOINT KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY EVENT, THE CUMULATIVE LIABILITY OF CHARGEPOINT FOR ALL CLAIMS WHATSOEVER RELATED TO THE CHARGING STATION WILL NOT EXCEED THE PRICE YOU PAID FOR THE CHARGING STATION. THE LIMITATIONS SET FORTH HEREIN ARE INTENDED TO LIMIT THE LIABILITY OF CHARGEPOINT AND SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

FCC Compliance Statement

Refer to the ChargePoint product nameplate to determine if your product is Class A or Class B.

• Class A Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer's instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case, you will be required to correct the interference at your own expense.

Important: Changes or modifications to this product not authorized by ChargePoint, Inc., could affect the EMC compliance and revoke your authority to operate this product.

Exposure to Radio Frequency Energy: The radiated power output of the 802.11 b/g/n radio and cellular modem (optional) in this device is below the FCC radio frequency exposure limits for uncontrolled equipment. The antenna of this product, used under normal conditions, is at least 20 cm away from the body of the user. This device must not be co-located or operated with any other antenna or transmitter by the manufacturer, subject to the conditions of the FCC Grant.

• Class B Statement: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.

Important: Changes or modifications to this product not authorized by ChargePoint, inc., could affect the EMC compliance and revoke your authority to operate this product.

Exposure to Radio Frequency Energy: The radiated power output of the 802.11 b/g/n radio and cellular modem (optional) in this device is below the FCC radio frequency exposure limits for uncontrolled equipment. The antenna of this product, used under normal conditions, is at least 20 cm away from the body of the user. This device must not be co-located or operated with any other antenna or transmitter by the manufacturer, subject to the conditions of the FCC Grant.

ISED (formerly Industry Canada)

This device complies with the licence-exempt RSS standard(s) of Innovation, Science and Economic Development Canada (ISED). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Cet appareil est conforme aux flux RSS exemptés de licence d'Innovation, Sciences et Développement économique Canada (ISDE). L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter.

Radiation Exposure Statement: This equipment complies with the IC RSS-102 radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 cm between the radiator and your body.

Énoncé d'exposition aux rayonnements: Cet équipement est conforme aux limites d'exposition aux rayonnements ioniques RSS-102 Pour un environnement incontrôlé. Cet équipement doit être installé et utilisé avec un Distance minimale de 20 cm entre le radiateur et votre corps.

FCC/IC Compliance Labels

Visit chargepoint.com/labels.